Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host+symbiont response

نویسندگان

  • Kenneth D. Hoadley
  • D. Tye Pettay
  • Andréa G. Grottoli
  • Wei-Jun Cai
  • Todd F. Melman
  • Verena Schoepf
  • Xinping Hu
  • Qian Li
  • Hui Xu
  • Yongchen Wang
  • Yohei Matsui
  • Justin H. Baumann
  • Mark E. Warner
چکیده

The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Reflectance of Palauan Reef-Building Coral with Different Symbionts in Response to Elevated Temperature

Spectral reflectance patterns of corals are driven largely by the pigments of photosynthetic symbionts within the host cnidarian. The warm inshore bays and cooler offshore reefs of Palau share a variety of coral species with differing endosymbiotic dinoflagellates (genus: Symbiodinium), with the thermally tolerant Symbiodinium trenchii (S. trenchii) (= type D1a or D1-4) predominating under the ...

متن کامل

Correction: Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures

Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and ...

متن کامل

Heterotrophy mitigates the response of the temperate coral Oculina arbuscula to temperature stress

Anthropogenic increases in atmospheric carbon dioxide concentration have caused global average sea surface temperature (SST) to increase by approximately 0.11°C per decade between 1971 and 2010 - a trend that is projected to continue through the 21st century. A multitude of research studies have demonstrated that increased SSTs compromise the coral holobiont (cnidarian host and its symbiotic al...

متن کامل

Size-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2.

Body size has large effects on organism physiology, but these effects remain poorly understood in modular animals with complex morphologies. Using two trials of a ∼24 day experiment conducted in 2014 and 2015, we tested the hypothesis that colony size of the coral Pocillopora verrucosa affects the response of calcification, aerobic respiration and gross photosynthesis to temperature (∼26.5 and ...

متن کامل

Symbiodinium Community Composition in Scleractinian Corals Is Not Affected by Life-Long Exposure to Elevated Carbon Dioxide

Ocean acidification (OA) is expected to negatively affect coral reefs, however little is known about how OA will change the coral-algal symbiosis on which reefs ultimately depend. This study investigated whether there would be differences in coral Symbiodinium types in response to OA, potentially improving coral performance. We used denaturing gradient gel electrophoresis (DGGE) of the internal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015